<table>
<thead>
<tr>
<th>Course Number</th>
<th>Math 375 Numerical Computing (WIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Value</td>
<td>3 Theory</td>
</tr>
<tr>
<td>Catalog Course Description</td>
<td>This course will cover solutions of nonlinear equations of one variable, solutions of linear equations in many variables (matrices), interpolation, techniques for approximation of integration and differentiation of functions, computational solutions of initial-value problems for ordinary differential equations, and programming with mathematical software. Students will be responsible for writing technical papers with citations describing the results of numerical computation. Prerequisite: MATH 163 or 163E and a computer language. (Spring) (3, 3T+0L)</td>
</tr>
<tr>
<td>Student Learning Outcomes/Objectives/Competencies of the Course</td>
<td>Student Learning Outcomes: At the end of this course the student will be able to:</td>
</tr>
</tbody>
</table>
| | 1. Find roots of non-linear equations
| | a. Bisection
| | b. Newton-Rhapson
| | c. Secant
| | 2. Interpolate functions using
| | a. Lagrange polynomials
| | b. Hermite polynomials
| | c. Cubic splines
| | 3. Numerically differentiate functions
| | 4. Numerically integrate functions with
| | a. Trapezoid rule
| | b. Simpson's rule
| | 5. Solve initial-value problems
| | a. Euler's method
| | b. Runge-Kutta
| | 6. Solving linear equations
| | a. Gaussian elimination
| | b. Iterative methods |
| **College-Wide Student Learning Outcomes** | Math 375 learning objectives align with the following NNMC College Wide Goal:
| | **Critical thought:**
| | • Students are required to analyze and synthesize information and draw reasoned conclusions. |