Bachelor of Engineering (BEng)
MECHANICAL ENGINEERING
Solar Energy Concentration

The curriculum of the BEng in Mechanical Engineering is designed for those engineering students who intend to launch a career in the design, installation, maintenance and repair of solar energy conversion and storage devices, modules and systems used for alternative energy sources or controllers. Coursework in the program is practice-oriented and prepares students to work in a variety of green technology engineering organizations, small or large businesses, product design or manufacturing companies, and alternative energy consultancies and public policy agencies.

The breadth of training in hardware, software, power engineering, troubleshooting equipment and other technological tools will enable the graduate to work in a variety of roles in such environments as an electric grid engineer, a power engineering network designer, and alternative energy engineer or a project manager. The graduate of this curriculum will be a professional engineering specialist in solar energy power sources, but broadly versed in mathematics, physics, general design, computer science, and business fundamentals.

Failure to maintain an overall GPA of 2.00 or better in all coursework will be sufficient cause for being dropped from the program.

The program objectives are the following:
1. Graduates will be situated in growing careers involving design, development, and support of Mechanical Engineering and Solar Energy Systems.
2. Graduates will perform effectively both individually and in teams.
3. Graduates will demonstrate involvement in high-level technical and leadership roles.
4. Graduates will accumulate the technical expertise to remain globally competitive.

Completion of this program should result in the following student outcomes:
1. An ability to apply knowledge of mathematics, science, and engineering
2. An ability to design and conduct experiments, as well as to analyze and interpret data
3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
4. An ability to function on multidisciplinary teams
5. An ability to identify, formulate, and solve engineering problems
6. An understanding of professional and ethical responsibility
7. An ability to communicate effectively
8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
9. A recognition of the need for, and an ability to, engage in life-long learning
10. Knowledge of contemporary issues
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

GENERAL EDUCATION (60 CR)
Area I. Communications (9 cr)

ENG 111 English Composition I (3)
ENG 116 Technical Writing (3)
SPCH 130 Public Speaking (3)

Area II. Mathematics (21 cr)

MATH 145 Introduction to Probability and Statistics (3)
MATH 162E Calculus I (4)
MATH 163E Calculus II (4)
MATH 264 Calculus III (4)
MATH 314 Linear Algebra with Applications (3)
MATH 316 Applied Ordinary Differential Equations (3)

Area III. Laboratory Sciences (12 cr)

CHEM 121/L General Chemistry I with lab (4)
PHYS 215/L Engineering Physics I with lab (4)
PHYS 216/L Engineering Physics II with lab (4)

Area IV. Social/Behavioral Sciences (6–9 cr)

ECON 201 Microeconomics (3)
Elective (3–6)

Area V. Humanities and Fine Arts (6–9 cr)

Second language (3)

Area VI. First Year Experience (3 cr)

FYE 101 First Year Experience (3)

PROGRAM REQUIREMENTS (71 CR)

Solar Energy and Storage (42 cr)

ME 160L General Engineering Design I (3)
ME 202 Engineering Statics (3)
ME 301 Thermodynamics (3)
ME 302 Mechanics of Materials (3)
ME 306 Dynamics (3)
ME 317 Fluid Mechanics (3)
ME 318L Mechanical Engineering Lab (3)
ME 320L Heat Transfer (4)
ME 390 Power Systems (3)
ME 403 Solar Thermal Applications (3)
ME 495 Advanced Mechanical Engineering Design (3)
ME 490 ME Capstone I (4) (WIC)
ME 491 ME Capstone II (4)

Support Technologies (20 cr)

ENGR 110L Introduction to Engineering (2)
ENGR 120L Introductory Mathematics for Engineering Applications (4)
EECE 152L Computer Programming I (4)
EECE 203L Circuit Analysis I (4)
EECE 453 Electric Energy Storage Devices (3)
EECE 472 Photovoltaic Devices (3)

Electives (9 cr)

Elective in ENGR/EECE/ME/MATH at 3XX/4XX-level (9)
TOTAL CREDITS: 131

SUGGESTED SEQUENCE OF COURSES
HFA = Humanities & Fine Arts (Area V)
SBS = Social/Behavioral Sciences (Area IV)

First Semester (16 cr)
ENGR 120L Introductory Mathematics for Engineering Applications (4)
EECE 152L Computer Programming I (4)
ENGR 110L Introduction to Engineering (2)
FYE 101 First Year Experience (3)
HFA Elective (3)

Second Semester (17 cr)
ENG 111 English Composition I (3)
MATH 162E Calculus I (4)
PHYS 215/L Engineering Physics I with lab (4)
ME 160L Gen. Engineering Design I (3)
MATH 145 Introduction to Probability and Statistics (3)

Third Semester (18 cr)
MATH 163E Calculus II (4)
PHYS 216/L Engineering Physics II with Lab (4)
ME 202 Engineering Statics (3)
CHEM 121/L General Chemistry I with lab (4)
ECON 201 Microeconomics (3)

Fourth Semester (16 cr)
EECE 203L Circuit Analysis I (4)
ME 306 Dynamics (3)
SPCH 130 Public Speaking (3)
ENG 116 Technical Writing (3)
ME 302 Mechanics of Materials (3)

Fifth Semester (16 cr)
ME 301 Thermodynamics (3)
Second Language (3)
MATH 264 Calculus III (4)
MATH 316 Applied Ordinary Differential Equations (3)
HFA Elective (3)

Sixth Semester (18 cr)
ME 317 Fluid Mechanics (3)
ME 495 Advanced Mechanical Engineering Design (3)
ENGR/EECE/ME/MATH Elective in 3XX/4XX (3)
MATH 314 Linear Algebra with Applications (3)
SBS/HFA Elective (3)
EECE 472 PV Devices (3)

Seventh Semester (14 cr)
ME 390 Power Systems (3)
ME 320L Heat Transfer (4)
ME 490 Capstone I (4)
ME 318L Mechanical Engineering Lab (3)

Eighth Semester (16 cr)
<table>
<thead>
<tr>
<th>Department</th>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE</td>
<td>453</td>
<td>Electric Energy Storage Devices (3)</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>491</td>
<td>Capstone II (4)</td>
<td></td>
</tr>
<tr>
<td>ENGR/EECE/ME/MATH Elective 3XX/4XX</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR/EECE/ME/MATH Elective 3XX/4XX</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>403</td>
<td>Solar Thermal Applications (3)</td>
<td></td>
</tr>
</tbody>
</table>